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Weather and Climate

Weather

» Current meteorological conditions
« Comprise “events’
* High-frequency timescales (< 1 month)

Climate

» Statistical summary of meteorological conditions
« Cumulative In nature
* Lower-frequency timescales (1+ months)

*Adapted from a slide provided by J. Abatzoglou, Univ. of Idaho



Fire-climate relationships: main concepts

+» Wildfire I1s climate enabled and weather driven
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Weather and Climate

*Weather conditions are an important control over the ignition
and behavior of individual fire events
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Weather and Climate

* Fire-climate relationships: need to consider longer timescales
and/or larger spatial regions

* How does climate influence
and control fire activity?
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Weather and Climate

*Short-term fuel drying *Long-term fuel drying

Obs. or Computed 10-Hour FM:  12-8ep-6 Obs. 1000-Hour FM:  12-8ep-6

ket fInv. Dist.” Interp.) {Inv. Dist’ Tnte p.)
WFAS-MAPS Graphics FIRE BEHAVIOR RESEARCH MISSOULA, MT WFAS-MAFS Graphics  FIRE BEHAVIOR RESEARCH MISSOULA, MT

Which is a better predictor of fire activity during the
course of a year? Why?



Weather and Climate

*Fire Danger — Static and dynamic factors of the fire environment that
influence ignition, spread, likelihood of containment and fire effects.
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Observed Fire Danger Class: 12-Sep-16
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Fire Danger Rating System

U.S. NFDRS System Structure

Site 1400 LST 24-Hour Previous Fuel
Description Observations Observations Moistures (FM)
Fuel Model Relative Humidity Maximum/Minimum 100-h

Relative Humidity
Slope Class — Temperature 1000-h
i M
Herbaceous Cloudiness M“-r:';x“:::':um
fuel type
Precipitation
Windspeed Duration
Fuel Stick
Molsture I
1-h FM 10-h FM 100-h FM 1000-h FM Live FM

._.__J— r
Cosn?;l;;:‘:nt Burning Index Energy Release
SC Bl Component
ERC

Fig. 15.2: The structure of the U.S. NFDRS illustrating the links between site variables, weather obser-
vations, fuel moisture, and the final index values, from Pyne et al. (1996; Fig. 4.22).



Weather and Climate

Example: Anaktuvuk River Fire (ARF), North Slope, AK
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Weather and Climate

Example: Anaktuvuk River Fire (ARF), North Slope, AK
*Anomalous warm and dry weather in the months prior to the fire

* Climate enabled landscape for burning
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Fire-climate relationships: main concepts

o+ Wildfire is climate enabled and weather driven

« Weather is an important control over individual fire events
due to factors such as lightning, wind, fine-fuel drying

* Climate enables landscapes for large fires to occur In
months-years prior to fire event
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1. Main concepts

b) Intermediate resource hypothesis




Intermediate resource hypothesis
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Comparing climate- and fuel-limited ecosystems

Climate Limited Fuel Limited

*Mesic environments *Xeric environments




Western U.S.

Generalised land cover

*How are large fires

spatially distributed across Pacific
the western U.S.? Ocean
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Western U.S.

*How are large fires
spatially distributed across
the western U.S.?

* |s there evidence for the
Intermediate resource
hypothesis?

Large fires in the western US

1984-2008
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Western U.S.

Large fires in the western US
1984-2008

*How are large fires
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1. Main concepts

c) Climate change and fire



*Why study fire-climate relationships? Why are they
Important to understand?

* To understand how fire activity may respond to ongoing
and future climate change.



Recent changes in climate

* Recent global changes
In fire season length
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* Fire season length has
been increasing
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Ex. Responses to climate change in western U.S.

* I ncrease | N fl re freq uen Cy A _ Western US Forest Wildfires and Spring-Summer Temperature
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Fire-climate relationships: main concepts

*» Intermediate resource hypothesis

» Fuel-limited: meteorological/ambient conditions conducive for burning;
low fuel availability

« Climate-limited: meteorological/ambient conditions too wet for burning ;
high fuel availability

* Climate change
* Fire seasons are becoming longer and affecting more area
« Climate change has direct effect on fire frequency and size

« EXx. (Westerling et al.):

Warmer/drier Climate — Earlier snow melt — Longer fire seasons & drier fuels
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' 2. Example from Arctic tundra and boreal forest
ecosystems
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Example from Arctic and boreal ecosystems

Ecography 39: 001-012, 2016
doi: 10.1111/ecog. 02205
& 2016 The Authors. Ecography @ 2016 Nordic Society Oikos

Subject Editor: Jessica Blois. Editor-in-Chief: Miguel Aratijo. Accepred 30 March 2016

Research

Climatic thresholds shape northern high-latitude fire regimes and
imply vulnerability to future climate change

Adam M. Young, Philip E. Higuera, Paul A. Duffy and Feng Sheng Hu

dabe, Moscow, ID, USA. — P E. Higuera (philip. @remontand.edi),

MT, USA. — P A D ! (
i o

. ana Dept of Geology,

Pt o) £

Depr of
AY:




Where are Arctic tundra and boreal forests?

Distribution of boreal forests and tundra ecosystems
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Wildfire and climate change

What will happen in boreal forest and tundra ecosystems under a
changing climate?

Temperature Change (°C)

How might fire regimes shift in
response to climate?

How might these fire-regime shifts
occur spatially and temporally?
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Global Arctic
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Explaining patterns in fire activity

Q: What controls this spatial pattern?

[[] Wetland tundra
[] Shrub tundra

[ ] Graminoid tundra
[] Alpine tundra

Bl Boreal forest
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Young et al. In Press Ecography



Quantifying fire-regime controls

Statistical modeling

Fire = f(climate, veg, topography)
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Fire-regime controls
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Fire-regime controls

Climatic controls
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Fire-regime controls

Why do these thresholds matter?
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Climatic interactions
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Projecting future fire activity

" Median 5 GCMs

*Fire rotation period (FRP) -
Length of time it takes burn an
area in equal in size to the study
area

» Climate projected to be more
conducive to wildfire during
21st-century

 Shifts to a more active fire
regime



Projecting future fire activity

Projected relative changes in fire activity

2010-2039 2040-2069 2070-2099

« Largest relative changes
occurring in forest-tundra
regions — near observed
climatic thresholds

Warmest GCM Median 5 GCMs

Coolest GCM




Not just Alaskal!

Global View: 21st-century projections of fire activity

Likely decrease  Likely increase Low
90% 66.7% 66.7% 90% agreement



Limitations to projecting future fire activity

What is not considered?
1. Changing vegetation
2. Changing ecosystem dynamics

3. Changing fire-climate relationships



Summary — Fire in the Far North
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*»* Varying levels of sensitivity to climatic
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climatic change in some regions
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Questions?

Adam Young

amyoung@uidaho.edu



